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Abstract

Blinded sample size reassessment is a popular means to control the power in clinical trials if no reliable information on

nuisance parameters is available in the planning phase. We investigate how sample size reassessment based on blinded

interim data affects the properties of point estimates and confidence intervals for parallel group superiority trials

comparing the means of a normal endpoint. We evaluate the properties of two standard reassessment rules that are

based on the sample size formula of the z-test, derive the worst case reassessment rule that maximizes the absolute

mean bias and obtain an upper bound for the mean bias of the treatment effect estimate.

Keywords

Adaptive design, interim analysis, internal pilot study, point estimate, sample size reassessment

1 Introduction

In clinical trials for the comparison of means of normally distributed observations, the sample size to achieve a
specific target power depends on the true effect size and variance. For the purpose of sample size planning, the
effect size is usually assumed to be equal to a minimally clinically relevant effect while the variance is often
estimated from historical data. For situations where only little prior knowledge on the variance is available,
clinical trial designs with sample size reassessment based on interim estimates of this nuisance parameter have
been proposed. Stein1 developed a two-stage procedure, where the second stage sample size is calculated based on
a first stage variance estimate aiming to achieve a pre-specified target power. In the context of clinical trials, several
extensions of Steins two-stage procedure have been considered2–8 that all require an unblinding of the interim data
for the computation of the variance estimate. However, regulatory agencies generally prefer blinded interim
analyses as they entail less potential for bias.9–13

Gould and Shih14 proposed to estimate the variance from the blinded interim data by computing the variance
from the total sample (pooling the observations from both groups), instead. Although this interim estimate is not
consistent15 and has a positive bias if the alternative hypothesis holds, the bias is negligible for effect sizes typically
observed in clinical trials.16 Furthermore, sample size reassessment based on the total variance has no relevant
impact on the type I error rate in parallel group superiority trials17 (see also the literature18–21) and achieves the
target power well. Similar results on sample size reassessment based on blinded nuisance parameter estimates were
obtained for binary data,22 count data23–25 longitudinal data,26 and for fully sequential sample size reassessment.27

For non-inferiority trials with normal endpoints, a minor inflation of the type I error rate for small sample sizes
has been observed.28,29 However, if the sample size reassessment rule is not only based on the primary endpoint but

1Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
2Department of Statistical Sciences, University of Padua, Padua, Italy
3Department of Statistics, Stockholm University, Stockholm, Sweden

Martin Posch and Florian Klinglmueller share first authorship.

Corresponding author:

Frank Miller, Department of Statistics, Stockholm University, SE-10691 Stockholm, Sweden.

Email: frank.miller@stat.su.se

Statistical Methods in Medical Research

2018, Vol. 27(6) 1830–1846

! The Author(s) 2016

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0962280216670424

journals.sagepub.com/home/smm

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0962280216670424
journals.sagepub.com/home/smm


also on blinded secondary or safety endpoint data, the type I error rate for the test of the primary endpoint may be
substantially inflated.30

While for adaptive clinical trials with sample size reassessment based on the unblinded interim treatment effect
estimate, it is well known that unadjusted point estimates of the effect size and confidence intervals may be
biased;31,32 the properties of point estimates and confidence intervals computed at the end of an adaptive
clinical trial with blinded sample size reassessment have received less attention. In this paper, we investigate the
bias and standard error of the treatment effect point estimate and compare the absolute mean bias due to blinded
sample size reassessment to upper boundaries derived for adaptive designs with unblinded sample size
reassessment.33 We also investigate the bias of the final variance estimate under sample size reassessment rules
that are based on the blinded interim variance estimate. We also investigate the bias of the final variance estimate
under sample size reassessment rules that are based on the blinded interim variance estimate. Previously, this bias
had been investigated for a corresponding unblinded reassessment rule (which had no upper sample size bound),
sharp bounds for the bias had been derived and an additive bias correction had been suggested.8 Here, in this
paper, we derive corresponding bounds for the bias of the final variance estimate in the blinded case. Furthermore,
we assess the coverage probability of one- and two-sided confidence intervals.

In Section 2, we introduce adaptive designs with blinded sample size reassessment. Theoretical results on the bias
of estimates are presented in Section 3. In Section 4, we report a simulation study quantifying the bias and coverage
probabilities in a variety of scenarios. The impact of the results is discussed in the context of a case study in Section 5.
Section 6 concludes the paper with a discussion and recommendations. Technical proofs are given in Appendix 1.

2 Blinded sample size reassessment

Consider a parallel group comparison of the means �a,�b of a normally distributed endpoint with common
unknown variance �2. The one-sided null hypothesis H0 :� � 0, is tested against H1 :�4 0 at level �, where
� ¼ �b � �a denotes the true effect size. Let �0 denotes the alternative for which the trial is powered and
assume that in the planning phase a first stage per group sample size n1 � 2 is chosen based on an a priori
variance estimate �20. Note, however, that all results below depend only on the chosen n1 and not the way it
has been determined. As a consequence, for given n1, they also apply if it has been determined with other
justifications. After the endpoints of the first stage subjects are observed, in a blinded interim analysis, the one-
sample variance estimate is computed, given by

S2
1,OS ¼

1

2n1 � 1

X
i¼a,b

Xn1
k¼1

ðXi1k � �X�1�Þ
2

" #

where Xijk is the observation k ¼ 1, . . . , nj in stage j¼ 1, 2 for treatment i ¼ a, b and �X�1� is the mean of the pooled
first stage samples. Based on S2

1,OS, the second stage sample size is chosen with a pre-specified sample size function
n2ðS

2
1,OSÞ. Below we drop the argument of the function n2 for convenience if the meaning is clear from the context.

Then, the overall sample size is n ¼ n1 þ n2 per group. After the study is completed and unblinded, we assume that
the point estimates for the mean difference and the variance
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are computed, where �Xi�� ¼
P2

j¼1

Pnj
k¼1 Xijk=n, i ¼ a, b. Furthermore, (i) the standard fixed sample lower confidence

bound corresponding to the one-sided null hypothesis H0 given by ��� t2n�2,1��S
ffiffiffiffiffiffiffiffi
2=n
p

, where t2n�2,1�� denotes the
1� � quantile of the central t-distribution with 2n� 2 degrees of freedom, (ii) the upper confidence
bound—corresponding to the complementary null hypotheses H�0 :� � 0—given by ��þ t2n�2,1��S

ffiffiffiffiffiffiffiffi
2=n
p

and (iii)
the two-sided confidence interval given by ��� t2n�2,1��=2S

ffiffiffiffiffiffiffiffi
2=n
p

is determined.
As example consider a sample size reassessment rule aiming to control the power under a pre-specified absolute

treatment effect. It is derived from the standard sample size formula for the comparison of means of normally
distributed observations with a one-sided z-test using the variance estimate S2

1,OS

nu2ðS
2
1,OSÞ ¼ min n2max, max n2min, 2ðz1�� þ z1��Þ

2 S
2
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where 1� � is the desired power and n2min and n2max are pre-specified minimal and maximal second stage sample
sizes with 0 � n2min 5 n2max. The þ1 in formula (1) was added for mathematical convenience to derive a lower
bound for the variance estimate in Theorem 4 below. Given that we anyway have to round the sample size to an
integer, this modification is of minor practical importance. While S2

1,OS is an unbiased variance estimator for �2

when the true effect size is zero, it is positively biased by �2n1=ð4n1 � 2Þ for effect sizes � 6¼ 0.5 A sample size
reassessment rule that is based on an adjusted variance estimate which is unbiased under the effect size �0 for which
the trial is powered is obtained from equation (1) by replacing S2

1,OS by S2
1,OS � �

2
0n1=ð4n1 � 2Þ and is given by

na2ðS
2
1,OSÞ ¼ min n2max, max n2min, 2ðz1�� þ z1��Þ

2 S2
1,OS

�20
�

n1
4n1 � 2

 !
� n1 þ 1

( )( )
ð2Þ

3 Theoretical results on the bias of the final mean and variance estimators

In this section, we consider adaptive two-stage designs with general sample size reassessment rules where the
second stage sample size is given as some non-constant function n2 : R

þ
! N0 of the blinded interim variance

estimate S2
1,OS. We derive the bias of the final effect size and variance estimators �� and S2.

Theorem 1. Consider an adaptive two-stage design with a general sample size reassessment rule n2ðS
2
1,OSÞ.

(a) The bias Eð ��� �Þ is given by Z 1
0

Z 1
0
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(b) Under the null hypothesis �¼ 0, the final mean estimator �� is unbiased.
(c) If n2ðS

2
1,OSÞ is increasing and �4 0 (�5 0) the estimator �� is negatively (positively) biased, respectively.

Furthermore, the absolute bias is symmetric in � around 0.
(d) If the sample size reassessment rule is increasing and limS2

1,OS
!1n2ðS

2
1,OSÞ ¼ 1, the bias of �� converges to 0 for

�!�1.

Note that the sample size functions nu2, n
a
2 are increasing such that the property (c) applies. If n2max ¼ 1, nu2, n

a
2

tend to infinity for S2
1,OS !1 such that the property (d) applies.

In Theorem 2, we give an upper bound for the bias of the mean in adaptive two-stage designs with a general
sample size reassessment rule n2ðS

2
1,OSÞ such that n2min � n2ðS

2
1,OSÞ � n2max, for lower and upper bounds where

n2min, n2max, where n2max may be infinite (corresponding to the case of unrestricted sample size reassessment). For
general unblinded sample size reassessment rules that may depend on the fully unblinded interim data, the upper
bound for the bias is33

1

n1 þ n2min
�

1

n1 þ n2max

� �
0:4�

ffiffiffiffiffiffiffi
2n1

p
ð3Þ

and is realized for the sample size reassessment rule that sets n2 ¼ n2min if ��1 � � and n2 ¼ n2max otherwise. This
upper bound obviously also applies for the case of blinded sample size reassessment based on the total variance
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estimate because the set of unblinded sample size reassessment rules for which n2 may depend on the unblinded
interim data in any way, includes all blinded sample size reassessment rules. This bound is not sharp if the sample
size depends on S2

1,OS, only. In the theorem below, we derive the sample size reassessment rule that maximizes the
bias and compute the corresponding maximal bias which is a sharp upper bound for the bias that can occur under
any sample reassessment based on sample size rules n2ðS

2
1,OSÞ. We show that for increasing effect sizes, the bias

approaches the bias of unblinded sample size reassessment.

Theorem 2. Consider an adaptive two-stage design with a general sample size reassessment rule n2ðS
2
1,OSÞ, such that

0 � n2min � n2ðS
2
1,OSÞ � n2max, where n2max may be infinite. Then,

(a) the expected first stage treatment effect estimate conditional on the variance estimate S2
1,OS is given by
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where ��1 denotes the unblinded first stage estimate of the mean treatment effect, and b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(b) the bias of �� is maximized for the sample size rule

n2ðS
2
1,OSÞ ¼

n2min if Eð ��1jS
2
1,OSÞ4 �
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(
ð4Þ

(c) the maximum bias of �� depends on the true effect size � and is given by

n1
n1 þ n2min

�
n1
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(d) For �!1 and s fixed, the maximum bias of �� caused by blinded sample size reassessment rules based on
S2
1,OS converges to the maximum bias caused by unblinded sample size reassessment rules given by equation (3).

Note that, by symmetry, the negative bias of �� is maximized by the sample size rule equation (4) and is given
by equation (5) with the inequality signs reversed. If n2min ¼ 0 and n2max ¼ 1, the first factor in equation (5)
reduces to 1.

In Theorem 3, we derive the bias of the variance estimator computed at the end of the trial for general sample
size reassessment rules n2ðS

2
1,OSÞ and show that it is symmetric in the true treatment effect � and converges to 0 for

increasing � under suitable conditions (which are satisfied for nu2, n
a
2 if n2max ¼ 1).

Theorem 3. Consider an adaptive two-stage design with a general sample size reassessment rule n2ðS
2
1,OSÞ. Then,

(a) the bias of the variance estimator S2 is given byZ 1
0

Z 1
�1
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where � ¼ ð2n1 � 2Þ=�2 and r is defined in Theorem 1;

(b) the bias of S2 is symmetric in � around 0;
(c) if limS2

1,OS
!1n2ðS

2
1,OSÞ ¼ 1, the bias of S2 converges to 0 for �!�1.

Posch et al. 1833



In Theorem 4, we derive a lower bound for the bias of the variance estimator S2 (which is negative) in an
adaptive two-stage design with sample size reassessment rule nu2.

Theorem 4. Consider a design with blinded sample size reassessment based on S2
1,OS, where the second stage

sample size is set to nu2ðS
2
1,OSÞ. Under the null hypothesis �¼ 0, the bias of the variance estimator S2 at the end

of the study has the following bounds

�
2n1 � 1

2n1 � 3
�
1

v
5ES2 � �2 5 0

where v ¼ 2ðz1�� þ z1��Þ
2=�20. If n2max ¼ 1 (no upper restriction for the sample size), the bias converges to the

lower bound for large variances

ES2 � �2!�
2n1 � 1

2n1 � 3
�
1

v
for �2!þ1

Note that this lower bound has a similar form as the bound derived for the bias in adaptive two-stage designs
with sample size reassessment based on the unblinded variance estimate.8 In the latter setting, the bound is given
by �ðn1 � 1Þ=½ðn1 � 2Þv�. The bound derived in Theorem 4 does not apply to designs where the adjusted rule na2 is
applied. The numerical results below suggest that for the adjusted rule the absolute bias is maximized for a finite �2

and not for �2!1 as for the unadjusted rule.

4 Simulation study of the properties of point estimates and confidence intervals

To quantify the bias of mean and variance estimates as well as the actual coverage of corresponding one- and two-
sided confidence intervals in adaptive two-stage designs with blinded sample size reassessment, a simulation study
was performed. We assumed that a trial is planned for an effect size �0 ¼ 1 and a priori variance estimate �0 at a
one-sided significance level � ¼ 0:025. The preplanned sample size of a two-armed parallel group trial was chosen
to provide 80% power (based on the normal approximation) for �0 2 f1, 1:5, 2g. The first stage sample size was set
to half of the preplanned total sample size leading to first stage per group sample sizes of n1 2 f8, 18, 32g. For each
first stage sample size, first stage data were simulated from normal distributions for effect sizes � ranging from �2
to 2 (in steps of 0.1) and common standard deviations �, ranging from 0.5 to 2 in steps of 0.5. The second stage
sample sizes were then reassessed to nu2, n

a
2 (with n2min ¼ 0). Below we refer to the latter reassessment rules as the

unadjusted and adjusted sample size reassessment rules. For each scenario 5� 107, trials were simulated with R.34

The source code is available in the R-package blindConfidence which can be downloaded and installed
from github. Details on the implementation and additional results are presented in the Supplementary
Material. Figures 1 and 2 show the mean bias of the final estimates of the mean and variance based on the
total sample. If the alternative holds, the estimates may be substantially biased for small first stage sample sizes.

For both sample size reassessment rules, the bias of the mean is zero under the null hypothesis and has the
opposite sign as the true effect size, otherwise (in accordance with Theorem 1). For very large positive and negative
effect sizes, the bias is close to zero. This is due to the fact that a large effect size results in a large positive bias of
the blinded interim variance estimates which in turn results in very large second stage sample sizes. As a
consequence, the overall estimates are essentially equal to the (unbiased) second stage estimates, and the bias
becomes negligible. In the considered scenarios, the absolute bias is decreasing in the first stage sample size. This
also holds for the upper bound of the bias for general sample size reassessment rules. However, while the bias for
the adjusted and unadjusted reassessment rules is small for larger sample sizes, the upper bound for general sample
size reassessment rules still exceeds 10% in the considered scenarios even in the case where n1 ¼ 32 subjects per
group are recruited in the first stage. In the considered scenarios, we observe that the upper bound for the bias of
the mean estimate increases in the true effect size � and the true standard deviation �. The numerical results
confirm that for increasing j�j the maximum bias under blinded sample size reassessment approaches to the
maximum bias under unblinded sample size reassessment as shown in Theorem 2.

The variance estimate is negatively biased for both considered sample size reassessment rules. For increasing
variances, the absolute bias under the null hypothesis �¼ 0 for the rule nu2 approaches the lower bound derived in
Theorem 4. For large positive and negative effect sizes, the bias approaches zero, again, because the overall
estimate becomes essentially equal to the (unbiased) second stage estimates. In general, we observe that using
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the adjusted interim variance estimate for sample size reassessment results in a larger absolute bias of mean and
variance estimates.

The difference of the coverage probabilities of the confidence intervals to the nominal coverage
probabilities (i.e., 0.975 for the one-sided, 0.95 for the two-sided confidence interval) is shown in Figure 3 for
the unadjusted sample size reassessment rule (see Figure 1 of the Supplementary Material for corresponding results
for the adjusted sample size reassessment rule). For positive �, the lower confidence bound is conservative (with
coverage probability larger than 0.975) while the upper bound is anti-conservative, and vice-versa for negative �.
In fact, due to symmetry, the coverage probability for the upper confidence bound at a certain true effect size � is
the same as the coverage probability of the lower confidence bound at ��. If the true �2 and the true j�j are small,
the trial will stop with minimal sample size almost with probability 1. Then, sample size is essentially fixed, no bias
occurs and coverage is as desired. This is, e.g., the case for � ¼ 1, n1 ¼ 32 and j�j5 1:3 and explains the exact
coverage there. Similar cases occur for small j�j in the three pictures for � ¼ 0:5 as well.

The two-sided coverage probability (which is given by one minus the sum of the non-coverage probabilities of
the lower and upper bounds) is not controlled over a large range of �. However, for �¼ 0 (i.e., under the null
hypothesis), the inflation of the non-coverage probability, which corresponds to the Type I error rate of the
corresponding test, is minor for small sample sizes (0.5 to 0.01 percentage points n1 5 10) and essentially
controlled for larger samples sizes. (See Figure 15 of the Supplementary Material for a simulation study that
aims to identify the � where the Type I error rate of the original hypothesis test is maximized.) The good coverage
under the null hypothesis is at first sight surprising, given that the variance estimate is negatively biased and the
mean estimate is unbiased. We therefore computed the actual variance �2e of the mean estimate in the simulation
study. To compare the actual variance of the mean to the estimated variance, we computed for each simulated trial
the variance estimate Ŝ2

e ¼
2S2

n1þn2
as well as the actual variance �2f ¼

2�2

n1þn2
of a design with fixed sample sizes n1, n2
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Figure 1. Bias of the mean under blinded sample size reassessment using the unadjusted (solid line) and adjusted (dashed line)

interim variance estimate. The dotted lines show maximum negative and positive bias that can be attained under any blinded sample

size reassessment rule according to Theorem 2. The dashed gray line shows the maximum bias that can be attained under any

(unblinded) sample size reassessment rule. The treatment effect used for planning is set to �0 ¼ 1. Rows refer to the a priori assumed

standard deviations �0 determining the first stage sample size n1. The columns correspond to actual standard deviations. The x-axis in

each graph denotes the true treatment effect �, the y-axis shows the bias.
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(thus, ignoring that n2 is dependent on the first stage sample). Both quantities were then averaged over the Monte-
Carlo samples. The results show that the true variance of the mean estimate of an adaptive design with blinded
sample size reassessment is smaller than the average variance of a fixed sample design with the same sample sizes.
The bias of the estimate of the variance of the mean estimate is close to zero around the null hypothesis. This holds
both for designs using the adjusted and unadjusted interim variance estimates to reassess the sample size and gives
some intuition why there is no relevant inflation of the coverage probability of confidence intervals under the null
hypotheses, even though the variance estimate has a considerable negative bias (see Figures 5 and 6 of the
Supplementary Material for results that show the variance of the mean estimate for designs that use the
unadjusted and adjusted sample size rule).

While Figures 1 to 3 demonstrate the dependence of the bias and coverage probabilities on the true mean and
standard deviation, in an actual trial these parameters are typically unknown. Therefore, we computed the maximum
absolute bias of the mean, variance and the maximum difference between nominal and actual coverage probabilities
for fixed first stage sample sizes over a range of values for the true mean and variance (see Figure 4). The
optimization was performed in several steps based on simulations across an increasingly finer grid of true mean
differences � 2 ½0, 4� and standard deviations � 2 ½:5, 4� and using increasingly larger numbers of up to 108 simulation
runs (see Section 2 of the Supplementary Material for computational details of this simulation).

Overall, the maximum bias of the mean and variance estimates as well as the maximum difference between
nominal and actual coverage probabilities using the adjusted sample size reassessment rule exceed that of the
unadjusted rule. The maximum absolute bias of the mean bias (Columns 1 and 2 of Figure 4) drops from 0.18
(0.08) for trials with a per group first stage sample size of n1 ¼ 2 to 0.02 (0.02) for trials with a per group first stage
sample size of n1 ¼ 50 if the adjusted (unadjusted) interim variance estimate is used to reassess the sample size. For
increasing values of the first stage sample size, the maximum of the absolute mean bias is found for larger values of
the true mean and variance.
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Figure 2. Bias of the variance under blinded sample size reassessment using the unadjusted (solid line) and adjusted (dashed line)

interim variance estimate. The gray line gives the lower bound from Theorem 4 for the bias under sample size reassessment based on

the unadjusted variance estimate. The treatment effect used for planning is set to �0 ¼ 1. Rows refer to the a priori assumed standard

deviations �0 determining the first stage sample size n1. The columns correspond to actual standard deviations. The x-axis in each

graph denotes the true treatment effect �, the y-axis shows the bias.
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For the unadjusted rule, the simulations suggest that the absolute variance bias is maximized for �¼ 0 and
�!1 (see Figure 2 and the additional simulations in Section 2 of the Supplementary Material). Thus, Column 3
of Figure 4 shows the absolute bias for �¼ 0 and �¼ 4 (the largest value of � considered in the parameter grid).
For the adjusted rule, Column 4 of Figure 4 shows the maximum absolute bias for �¼ 0 and � maximized over the
grid. For the adjusted rule, the maximum bias is attained for a finite �. The maximum absolute bias of the variance
estimate drops from 0.27 (0.19) for trials with a per group first stage sample size of n1 ¼ 2 to 0.07 (0.06) for trials
with a per group first stage sample size of n1 ¼ 50 if the adjusted (unadjusted) interim variance estimate is used to
reassess the sample size. In the simulation, the maxima of the absolute variance bias, using the unadjusted
reassessment rule, is practically identical to the theoretical boundary derived in Theorem 4 (see the gray line in
the first graph of Column 3 of Figure 4). If the adjusted rule is used, the maximum is attained for values of �
ranging from 1 to 2, increasing with the first stage sample size.

The maximum negative difference between actual and nominal coverage probabilities (‘‘AC-NC,’’ in Columns 5
and 6 of Figure 4) of the one-sided confidence intervals ranges from about 2.8 (2.4) to 0.4 (0.3) percentage points if
the adjusted (unadjusted) variance estimate is used to reassess the sample size. For the two-sided confidence
intervals, differences between actual and nominal coverage are slightly lower ranging from 2.4 (2) to 0.2 (0.2)
percentage points, respectively. For increasing first stage sample sizes, the maximum is attained for increasing
values of both � and � where the former ranges between 1 and 3 and the latter between 0.5 and 1.5.

In Section 4 of the Supplementary Material, the corresponding results for restricted sample size rules that limit
the maximum second stage sample size to twice the preplanned second stage sample size, are given. We observe
that for scenarios where �0 5 �, limiting the second stage sample size results in a reduction of the (absolute) bias
and higher coverage probabilities. This, however, comes at the price of limited control in terms of power. When
�0 4 � we observe that the (absolute) bias of the mean estimate (in line with the theoretical results in Theorem 2) is
reduced by a factor n2max=ðn1 þ n2maxÞ. The bias of the variance estimate as well as the difference between actual
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Figure 3. Difference between actual and nominal coverage probabilities in percentage points under blinded sample size

reassessment using the unadjusted interim variance estimate S1,OS: upper confidence bound (dashed line), lower confidence bound

(dotted line) and two-sided interval (solid line). Rows refer to the a priori assumed standard deviations �0 determining the first stage

sample size n1. The columns correspond to actual standard deviations. The x-axis in each graph denotes the true treatment effect �;
the y-axis shows the difference of actual to nominal coverage probability such that negative values indicate settings where the

confidence bound is not valid.
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and nominal coverage probabilities are less affected by restricting the second stage sample size. When � is
substantially smaller than �0 bias and coverage probabilities under the restricted and unrestricted sample size
reassessment rules are nearly identical.

5 Case study

We illustrate the estimation of treatment effects with a randomized placebo controlled trial to demonstrate the
efficacy of the kava-kava special extract ‘‘WS� 1490’’ for the treatment of anxiety35 that was used to illustrate
procedures for blinded sample size adjustment.17 The primary endpoint of the study was the change in the
Hamilton Anxiety Scale (HAMA) between baseline and end of treatment. Assuming a mean difference between
treatment and control of �0 ¼ 5:5 and a standard deviation of �0 ¼ 8 (i.e., a variance of �20 ¼ 64) results in a
sample size of 34 patients per group to provide a power of 80%.

As in the previous case study,17 we assume that sample size reassessment based on blinded data is performed
after 15 patients per group, that the sample size reassessment rules were applied with n2min ¼ 0 and n2max ¼ 1

and consider that the interim estimate of the standard deviation is S1,OS ¼ 6. Consequently, we get nu2 ¼ 4:7 and
na2 ¼ 0:6, such that in the second stage five patients per group would have been recruited based on the unadjusted
sample size reassessment rule nu2, and only one patient per group based the adjusted rule na2.

To estimate the bias of the mean and variance estimate as well as the coverage probabilities of confidence
intervals, we performed a simulation study for true effect sizes � ranging from �11 ð¼ �2�0Þ to 11 ð¼ 2�0Þ in steps
of 0.05, and � from 1 to 20 in steps of 1 (see Figure 5).

5.1 Unadjusted sample size rule

For fixed �, the absolute bias of the variance estimate is increasing in �. For �¼ 20, the bias of the variance
becomes �2:06 which is within simulation error of the theoretical lower bound. The absolute mean bias takes its
maximum (minimum) 0.2 (�0.2) for the effect sizes � ¼ �7:98 ð7:98Þ, respectively, and a standard deviation of
� ¼ 5. The maximum inflation of the non-coverage probabilities of one-sided 97.5% and two-sided 95%
confidence intervals is 0.7 and 0.5 percentage points, respectively. The actual coverage probabilities are smallest
for large absolute values of the true mean difference and standard deviations of around 5.
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5.2 Adjusted sample size rule

If the sample size reassessment is based on the adjusted variance estimate, the absolute bias of the variance and
mean estimate will be even larger taking values up to 2.49 for the variance and up to 0.25 for the mean,
respectively. The inflation of the non-coverage probabilities goes up to 0.9 percentage points for the one-sided
confidence intervals and 0.6 percentage points for the two-sided intervals.

6 Discussion

We investigated the properties of point estimates and confidence intervals in adaptive two-stage clinical trials
where the sample size is reassessed based on blinded interim variance estimates. Such adaptive designs are in
accordance with current regulatory guidance that proposes blinded sample size reassessment procedures based on
aggregated interim data.9–11 We showed that such blinded sample size reassessment may lead to biased effect size
estimates, biased variance estimates and may have an impact on the coverage probability of confidence intervals.
The extent of the biases depends on the specific sample size reassessment rule, the first stage sample size, the true
effect size and the variance.

We showed that for the unadjusted and the adjusted sample size reassessment rules that aim to control the
power at the pre-specified level, the bias of confidence intervals may be large for very small first stage sample sizes
but is small otherwise. Under the null hypothesis, even for first stage sample sizes as low as 16, the confidence
intervals do not exhibit a relevant inflation of the non-coverage probability. For positive effect sizes, inflations
(even though minor) are observed also for somewhat larger sample sizes. This corresponds to previous findings
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that the type I error rate of superiority as well as non-inferiority tests is hardly affected by blinded sample size
reassessment.17,28 In addition, we show that for positive treatment effects the lower confidence interval (which is
often the most relevant because it gives a lower bound of the treatment effect) is strictly conservative in all
considered simulation scenarios. The upper bound in contrast shows an inflation of the non-coverage
probability, which is however only of relevant size if sample sizes are small.

An approach to obtain conservative confidence intervals even for trials with small first stage sample sizes is to
apply methods proposed for flexible designs with unblinded interim analyses32,33,36–39 which are based on
combination tests or the conditional error rate principle. Such approaches allow to construct confidence
intervals which control the coverage probabilities. However, they are based on test statistics that do not
equally weigh outcomes from patients recruited in the first and second stage. A hybrid approach that strictly
controls the coverage probability could be based on confidence intervals that are the union of the fixed sample
confidence interval and the confidence interval obtained from the flexible design methodology. Similar approaches
have been proposed for hypothesis testing in adaptive designs.40,41

We demonstrated that the treatment effect estimates are negatively (positively) biased under the adjusted and
unadjusted sample size reassessment rules for all positive (negative) effect sizes. The bias decreases with the first
stage sample size but for worst case parameter constellations it remains noticeable also for larger sample sizes. In
addition, for the worst case sample size reassessment rule based on blinded variance estimates, the bias may be
substantial even for large first stage sample sizes: As the effect size increases the maximum bias of the blinded
sample size reassessment rule approaches the bias of unblinded sample size reassessment. As a consequence to
maintain the integrity of confirmatory clinical trials with blinded sample size reassessment, binding sample size
adaptation rules must be pre-specified and it is important to verify on a case-by-case basis that the reassessment
rules used do not have a substantial impact on the properties of estimators should be used.
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Appendix 1: Proofs of the Theorems

Note that the blinded first stage variance estimate can be written as17

S2
1,OS ¼

2ðn1 � 1Þ

2n1 � 1
S2
1 þ

n1
2ð2n1 � 1Þ

��2
1 ð6Þ

where ��1 denotes the unblinded first stage estimates of the mean treatment effect and S2
1 the (unblinded) pooled

variance estimate. Thus, every second stage sample size rule n2ðS
2
1,OSÞ can be written as function n2ðS

2
1,

��1Þ of S
2
1

and ��1 which is symmetric in ��1 around 0. We can then write rðx, yÞ ¼ n2ðx, yÞ=n1: Below we switch between both
parameterizations of n2.

Proof of Theorem 1

Proof. (a) Let the true effect size � be fixed. The bias of �� is given by Cov 1
1þrðS2

1
, ��1Þ

, ��1

� �
, see Brannath et al.,33

which can be computed by

E
��1

1þ rðS2
1,

��1Þ

 !
� E

1

1þ rðS2
1,

��1Þ

 !
Eð ��1Þ ¼ E

��1 � �

1þ rðS2
1,

��1Þ

 !

¼

Z 1
0

Z 1
�1

t

1þ rðq, �þ tÞ
’
0,

ffiffiffiffiffiffiffiffiffiffi
2�2=n1
p ðtÞ�22n1�2ðq�Þ�dtdq

¼

Z 1
0

Z 1
0

t
rðq, �� tÞ � rðq, �þ tÞ

½1þ rðq, �þ tÞ�½1þ rðq, �� tÞ�
’
0,

ffiffiffiffiffiffiffiffiffiffi
2�2=n1
p ðtÞ�22n1�2ðq�Þ�dtdq

ð7Þ

where � ¼ ð2n1 � 2Þ=�2.
(b) and (c) The sign of the integral is determined by the sign of n2ðq, tþ �Þ � n2ðq, � tþ �Þ. Note that r(q, y) is

symmetric in y around 0 and increasing for y> 0 since this is true for n2ðq, yÞ. Thus, the integral is zero for �¼ 0,
negative for positive � and positive for negative �. Also the symmetry of the absolute bias follows by the symmetry
of n2ðq, yÞ in y around 0. (d) The first factor in equation (7) tends to 0, and the proof follows with the dominated
convergence theorem. «

Proof of Theorem 2

Proof. (a) By equation (6), the joint density of ��1 and S2
1,OS is given by

hðx, vÞ ¼ ’
�,
ffiffiffiffiffiffiffiffiffiffi
2�2=n1
p ðxÞ�22n1�2 ½ð2n1 � 1Þv� x2n1=2�=�

2
� �

� ð2n1 � 1Þ=�2

for v � 0 and jxj � b and hðx, vÞ ¼ 0 otherwise. Therefore, the conditional distribution of ��1 given S2
1,OS ¼ v is

hðx, vÞ=
R b
�b hðx, vÞdx and (a) follows.

(b) Note that the bias is given by

Eð ��� �Þ ¼ E ð ��1 � �Þ
n1

n1 þ n2ðS
2
1,OSÞ

" #

¼ E E ð ��1 � �Þ
n1

n1 þ n2ðS
2
1,OSÞ
jS2

1,OS

" #( )
ð8Þ

¼ E E E ð ��1 � �ÞjS
2
1,OS

� � n1

n1 þ n2ðS
2
1,OSÞ
jS2

1,OS

" #( )
ð9Þ
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For fixed S2
1,OS, the term within the outer conditional expectation in equation (8) is deterministic and decreases in n2

if Eð ��1jS
2
1,OSÞ4 � and increases if Eð ��1jS

2
1,OSÞ5 �. Therefore, the sample size rule equation (4) maximizes the bias.

(c) We plug-in the worst case sample size rule equation (4) into equation (9) and obtain

Eð ��� �Þ ¼ E
n1

n1 þ n2min
Eð ��1 � �jS

2
1,OSÞ1fEð ��1jS

2
1,OS
Þ4 �g

	 


þ E
n1

n1 þ n2max
Eð ��1 � �jS

2
1,OSÞ1fEð ��1jS

2
1,OS
Þ��g

	 


Because ��1 is unbiased such that Eð ��1 � �jS
2
1,OSÞ1fEð ��1jS2

1,OS
Þ4 �g ¼ �Eð

��1 � �jS
2
1,OSÞ1fEð ��1jS2

1,OS
Þ��g we get

equation (5).
(d) LetN denotes a set of sample size reassessment rules n2,�ðS

2
1,OS,

��1Þ that may depend on �,S2
1,OS,

��1. Given a
sample size rule n2,�ð�Þ 2 N , the bias can be written as

E� ��� �
� �

¼ E� ð ��1 � �Þ
n1

n1 þ n2,�ðS
2
1,OS,

��1Þ

 !

¼

Z 1
�1

Z 1
0

y
n1

n1 þ n2,�ðv, yþ �Þ
’0,�= ffiffiffiffin1p ð yÞ

� �22n1�2 ½ð2n1 � 1Þv� ð yþ �Þ2n1=2�=�
2

� �
dvdy

ð10Þ

The set of integrands of the outer integral in equation (10) for second stage sample size rules in N is uniformly
integrable because the fraction n1=½n1 þ n2,�ð yþ �, vÞ� � 1 and the �2-density is bounded (since n1 � 2).

The unblinded sample size reassessment rule that maximizes the bias for given � is33

n2,�ð ��1Þ ¼
n2min if ��1 4 �

n2max otherwise

(

Consider the blinded sample size rules

~n2,�ðS
2
1,OSÞ ¼

n2min if S2
1,OS 4 �2 n1

2ð2n1�1Þ

n2max otherwise



We show that for fixed � and �!1 the second stage sample sizes of the blinded sample size rule
~n2ðS

2
1,OSÞ ! n2ð ��1Þ, almost surely. Because, as shown above, the corresponding integrands in equation (10) are

uniformly integrable, and it follows that also the respective biases converge and (d) follows.
Let 	4 0. Then, there exists an 	1, 1=34 	1 4 0, such that for all � we have P�ðj ��1 � �j4 3	1Þ4 1� 	.

Furthermore, there exists a �0 4 2 such that for all �4 �0 we have P�ðS
2
1=�5 	1Þ4 1� 	 and

P�ð ��1 4 0Þ4 1� 	. Thus, for the event A ¼ f ��1 4 0g \ fS2
1=�5 	1g \ fj ��1 � �j4 3	1g we have P�ðAÞ � 1� 3	.

However, on the set A we have n2,�ð ��1Þ ¼ ~n2,�ðS
2
1,OSÞ: If n2,�ð

��1Þ ¼ n2min then ��1 4 � and on A also ��1 4 �þ 3	1.
Therefore, by equation (6)
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1,OSÞ ¼ n2min. On the other hand, if n2,�ð ��1Þ ¼ n2max then ��1 5 � and onA also 0 � ��1 5 �� 3	1. Therefore,

by equation (6), because 2ðn1 � 1Þ=ð2n1 � 1Þ � 1 and 1=3 � n1=2ð2n1 � 1Þ � 1=4 and on A we have S2
1 � 	1�
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where the last inequality follows because �4 2 and 	1 5 1=3. «
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Proof of Theorem 3

Proof. Let ��j ¼ �Xaj� � �Xbj� be the observed mean difference between the treatments in stage j¼ 1 and (if n2 4 0) in
stage j¼ 2.

We consider first the case that n2 4 0; the following considerations are under the condition of S2
1 and

��1 such that

they lead to n2 4 0. Let �i ¼ �Xi1� � �Xi2� be the observed mean difference between the stages for treatment i ¼ a, b.

Let further S2
2 be the (unblinded) pooled variance estimate of the second stage (for n2 ¼ 1, we define S2

2 ¼ 0),

�þ ¼ �a þ�b ¼ 2 �X�1� � �X�2�
� �

be twice of the overall difference between the stages and �� ¼ �a ��b ¼ ��1 � ��2.

With this notation, we can split the total variance estimate S2 into parts

S2 ¼
2n1 � 2

2n� 2
S2
1 þ

2n2 � 2

2n� 2
S2
2 þ

n1n2
2nð2n� 2Þ

�2
þ þ

n1n2
2nð2n� 2Þ

�2
� ð11Þ

Obviously, EðS2
2jnÞ ¼ EðS2

2Þ ¼ �
2 for all n. As �X�1�, S

2
1 and ��1 are mutually independent (and consequently n

and �X�1�), and as �X�1� and �X�2� are independent under the condition of n, �þ is conditionally on n distributed as
Nð0, 2�2ð1=n1 þ 1=n2ÞÞ.

Under the condition of n, ��2 is distributed as Nð�, 2�2=n2Þ. Further, under the condition of S2
1 and

��1,
n2
2�2
ð ��1 � ��2Þ

2
¼ n2

2�2
�2
� has a non-central �2 distribution with 1 degree of freedom and non-centrality

parameter n2ð ��1��Þ
2

2�2
. Therefore, it follows

EðS2 � �2jS2
1,

��1Þ ¼ E
2n1 � 2

2n� 2
ðS2

1 � �
2Þ þ

2n2 � 2

2n� 2
ðS2

2 � �
2Þ

	

þ
�2

2n� 2

n1n2
2n�2

�2
þ � 1

� �
þ

�2

2n� 2

n1
n

n2
2�2

�2
� � 1

� �
jS2

1,
��1




¼ E
n1 � 1

n� 1
ðS2

1 � �
2Þ þ

�2

2n� 2

n1
n

n2
2�2

�2
� � 1

� �
jS2

1,
��1

	 


¼ E
n1 � 1

n� 1
ðS2

1 � �
2Þ þ

�2

2n� 2

n1
n
þ

n1n2
2�2n
ð ��1 � �Þ

2
� 1

� �
jS2

1,
��1

	 


¼ E
1

n� 1
ðn1 � 1ÞðS2

1 � �
2Þ þ

n2
2n

n1
2
ð ��1 � �Þ

2
� �2

� �� �
jS2

1,
��1

	 


ð12Þ

For cases S2
1 and

��1 leading to n2 ¼ 0, we can go directly from the first to the last row in the above derivation.
Using n ¼ ð1þ rðS2

1,
��1ÞÞn1 and n2=n ¼ ð1þ rðS2

1,
��1ÞÞ

�1, the bias EðS2Þ � �2 can therefore be written asZ 1
0

Z 1
�1

1

ðn1 � 1þ n1rðq, tþ �ÞÞ
ðn1 � 1Þðq� �2Þ þ

t2n1=2� �
2

2þ 2rðq, tþ �Þ

� �
� ’

0,
ffiffiffiffiffiffiffiffiffiffi
2�2=n1
p ðtÞ�22n1�2ðq�Þ�dtdq

(a) The integral
R1
�1

. . . dt can again as in Theorem 1 be divided into
R 0
�1

. . . dt and
R1
0 . . . dt. By replacing t with

�t in the first integral, it can be written as one integral over ½0,1� in the same way as in Theorem 1.
(b) One can conclude that the bias is symmetric around 0 for � since rðq, yÞ ¼ rðq, � yÞ.
(c) The asymptotic unbiasedness for �!�1 follows from the integral expression with the dominated

convergence theorem. «

Proof of Theorem 4

For the proof of Theorem 4, we show the following lemmas:

Lemma 1. Under the null hypothesis �¼ 0

EðS2
1jS

2
1,OSÞ ¼ E

n1
2

��2
1jS

2
1,OS

h i
¼ S2

1,OS
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Proof. 2n1�1
�2

S2
1,OS is �2-distributed with 2n1 � 1 degrees of freedom and by equation (6) can be written as sum of

2n1 � 1 independent �21-distributed random variables Qj, j ¼ 1, . . . , 2n1 � 1, such that Q1 ¼
n1
2�2

��2
1 andP2n1�1

j¼2 Qj ¼
2n1�2
�2

S2
1. All Q1, . . . ,Q2n1�1 are identically distributed, and all Qj appear in the same way in the

condition S2
1,OS ¼ const �

P2n1�1
j¼1 Qj. Therefore, the Qj is exchangeable in the conditional distribution

EðQ1jS
2
1,OSÞ without changing the value of it: we have EðQ1jS

2
1,OSÞ ¼ EðQj jS

2
1,OSÞ for j ¼ 2, . . . , 2n1 � 1 and

EðS2
1jS

2
1,OSÞ ¼

�2

2n1 � 2

X2n1�1
j¼2

EðQj jS
2
1,OSÞ ¼ �

2EðQ1jS
2
1,OSÞ

¼
�2

2n1 � 1

X2n1�1
j¼1

EðQj jS
2
1,OSÞ ¼ S2

1,OS

«

Lemma 2. Let c, d be arbitrary with 05 c5 d � 1. For S2
1,OS, the following inequality is fulfilled

Cov S2
1,OS,

1

minðmaxðS2
1,OS, cÞ, d Þ

( )
4 Cov S2

1,OS,
1

S2
1,OS

 !

Proof. Note that a proof for d ¼ 1 and for S2
1 instead of S2

1,OS is in Miller.8 To include the possibility of d51,
we show

Cov S2
1,OS,

1

minðmaxðS2
1,OS, cÞ, d Þ

( )

¼ Cov S2
1,OS, maxðminð1=S2

1,OS, 1=cÞ, 1=d Þ
n o

¼ Cov S2
1,OS,

1

S2
1,OS

 !
� Cov S2

1,OS, ð1=S
2
1,OS � 1=cÞ � 1fS2

1,OS
5 cg

n o

� Cov S2
1,OS, ð1=S

2
1,OS � 1=d Þ � 1fS2

1,OS
4 dg

n o

As ð1=x� 1=cÞ � 1fx5cg and ð1=x� 1=d Þ � 1fx4dg are monotonically decreasing functions of x, the second and third
covariances above are �0; moreover, as c> 0, the second covariance is negative.42 This completes the proof. «

Proof of Theorem 4. From equation (12) in the proof of Theorem 3 follows with Lemma 1 under the null
hypothesis �¼ 0

EðS2 � �2Þ ¼ E EðS2 � �2jS2
1,OSÞ

h i
¼ E

n1 �
1
2� n1=ð2nÞ

n� 1
ðS2

1,OS � �
2Þ

	 


Since EðS2
1,OSÞ ¼ �

2 and n1�1=2�n1=ð2nÞ
n�1 as function of S2

1,OS is a monotonically decreasing weight function, the bias
of S2 is non-positive. Since there is no constant c such that Pðn1�1=2�n1=ð2nÞn�1 ¼ cÞ ¼ 1, the bias is negative and the
upper bound is shown. To show the lower bound, we calculate (writing nmin ¼ n1 þ n2min and nmax ¼ n1 þ n2max)

EðS2 � �2Þ ð13Þ

¼ E
n1 � 1=2

n� 1
ðS2

1,OS � �
2Þ

	 

� E

n1
2nðn� 1Þ

ðS2
1,OS � �

2Þ

	 

ð14Þ
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4
n1 � 1=2

v
E

S2
1,OS � �

2

minfðnmax � 1Þ=v, maxfðnmin � 1Þ=v,S2
1,OSgg

" #
ð15Þ

4
n1 � 1=2

v
E

S2
1,OS � �

2

S2
1,OS

 !
ð16Þ

¼
n1 � 1=2

v
1� E

�2

S2
1,OS

 !( )
¼ �

2n1 � 1

2n1 � 3
�
1

v
ð17Þ

The last expected value in equation (14) is negative since 1=ðnðn� 1ÞÞ as function of S2
1,OS is monotonically

decreasing; therefore, the total expression becomes smaller when this term is removed in equation (15). Further, we
used in equation (15) the sample size formula n2 ¼ minfn2max, maxfn2min, vS

2
1,OS � n1 þ 1gg. For the inequality in

equation (16), we applied Lemma 2. For the equality in equation (17), we have used Eð�2=S2
1,OSÞ ¼

E ð2n1 � 1Þ=X
� �

¼ ð2n1 � 1ÞEðX�1Þ ¼ ð2n1 � 1Þ=ð2n1 � 3Þ where X is a chi-squared distributed random variable
with 2n1 � 1 degrees of freedom. The expected value of X�1 can be derived, for example, from Johnson
et al.,43 p. 421.

When �2!1, the last expected value in equation (14) converges to 0 which implies that the difference between
the expressions in equations (14) and (15) converges to 0. Further, as the probability for S2

1,OS 4 ðn1 þ n2minÞ=v
converges to 1 in the case n2max ¼ 1, also the difference between equations (15) and (16) converges to 0.
Therefore, the lower bound becomes sharp when �2!1. «

We note that in case of using the adjusted sample size rule na2 instead of nu2, then we cannot go in a similar way
from equations (15) to (16). Our simulation results in Figure 2 and in the lower panel of Figure 5 show that the
bias for the adjusted sample size rule can be below the lower bound of Theorem 4.
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